Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа с. Хворостянка муниципального района Хворостянский Самарской области

РАССМОТРЕНО

СОГЛАСОВАНО

методическим объединением

Заместитель директора

учителей маястальку дргунку по УВР

/И.А. Воробьева/

и широр матики Протокол № 1 от «*A8* » авгуета 2 Руководитель МО *Лу*

2018г.

УТВЕРЖДАЮ Директор школы селен 10.А. Савенкова/

Приказ №

РАБОЧАЯ ПРОГРАММА

по физике

10 - 11 класс

Ступень обучения: среднее общее образование

Уровень: базовый

Пояснительная записка

Рабочая программа по учебному предмету «Физика» для 10-11 классов составлена в соответствии с государственным стандартом среднего (полного) общего образования 2004 г (Федеральный компонент государственного стандарта среднего (полного) общего образования по физике, утвержденный приказом Министерства образования и науки Российской Федерации от 05.03.2004, № 1089), учебным планом ГБОУ СОШ с. Хворостянка.

Рабочая программа курса «Физика 10-11» разработана на основе «Примерной программы основного общего образования по физике. 10-11 классы» под редакцией В. А. Орлова, О. Ф. Кабардина, В. А. Коровина и др., авторской программы «Физика. 10-11 классы» под редакцией В. С. Данюшенкова, О. В. Коршуновой,2012, в соответствии с федеральным перечнем учебников, утверждённым Приказом МОиН РФ от 31.03.2014 № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования», и ориентирована на работу по учебно-методическому комплекту:

10 класс

- 1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика 10 класс. М.: Просвещение, 2018.
- 2. Рымкевич А.П. Сборник задач по физике. 10-11 классы.-М.: Дрофа, 2007.
- 3. Сборник задач по физике: для 10-11 кл. общобразоват. учрежедний / Сост. Г.Н Степанова 9-е изд. М.: Просвещение, 2014
- 4. Интернет-ресурсы: электронные образовательные ресурсы из единой коллекции цифровых образовательных ресурсов (http://school-collection.edu.ru/), каталога Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/): информационные, электронные упражнения, мультимедиа ресурсы, электронные тесты

11 класс

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика 11 класс. – М.: Просвещение, 2008.

- 2. Рымкевич А.П. Сборник задач по физике. 10-11 классы.-М.: Дрофа, 2007.
- 3. Сборник задач по физике: для 10-11 кл. общобразоват. учрежедний / Сост. Г.Н Степанова 9-е изд. М.: Просвещение, 2003
- 4. Интернет-ресурсы: электронные образовательные ресурсы из единой коллекции цифровых образовательных ресурсов (http://school-collection.edu.ru/), каталога Федерального центра информационно-образовательных ресурсов (http://fcior.edu.ru/): информационные, электронные упражнения, мультимедиа ресурсы, электронные тесты.

Место предмета в учебном плане.

Класс	Количество часов	
	В неделю	В год
10	2	68
11	2	68

Общая характеристика учебного предмета «Физика 10-11»

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и методы научного познания».

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механики, молекулярной физики, электродинамики, электромагнитных колебаний и волн, квантовой физики.

Особенностью предмета «физика» в учебном плане образовательной школы является и тот факт, что овладение основными физическими

понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.

ЦЕЛИ:

- формирование у обучающихся умения видеть и понимать ценность образования, значимость физического знания для каждого человека; умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- формирование у обучающихся целостного представления о мире и роли физики в создании современной естественнонаучной картины мира; умения объяснять объекты и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого физические знания;
- приобретение обучающимися опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности, навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, эффективного и безопасного использования различных технических устройств;
- овладение системой научных знаний о физических свойствах окружающего мира, об основных физических законах и о способах их использования в практической жизни.

ЗАДАЧИ:

- формирование основ научного мировоззрения;
- развитие интеллектуальных способностей обучающихся;
- развитие познавательных интересов школьников в процессе изучения физики;
- знакомство с методами научного познания окружающего мира;
- постановка проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Программы обеспечивают достижение выпускниками средней школы определённых личностных, метапредметных и предметных результатов.

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;

• в познавательной (когнитивной, интеллектуальной) сфере – умение управлять своей познавательной деятельностью.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
 - умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике;
- использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

в познавательной сфере:

- давать определения изученным понятиям;
- называть основные положения изученных теорий и гипотез;
- описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык физики;
- классифицировать изученные объекты и явления;
- делать выводы и умозаключения из наблюдений, изученных физических закономерностей, прогнозировать возможные результаты;
- структурировать изученный материал;
- интерпретировать физическую информацию, полученную из других источников;
- применять приобретенные знания по физике для решения практических задач, встречающихся в повседневной жизни, для безопасного использования бытовых технических устройств, рационального природопользования и охраны окружающей среды;

в ценностно-ориентационной сфере:

• анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием физических процессов;

в трудовой сфере:

- проводить физический эксперимент;
 - в сфере физической культуры:
- оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.

СОДЕРЖАНИЕ КУРСА:

10 класс

Введение (2ч.)

Физика как наука и основа естествознания. Экспериментальный характер физики. Физические величины и их измерение. Связи между физическими величинами. Научные методы познания окружающего мира и их отличие от других методов познания. Роль эксперимента и теории в процессе познания природы. Научные гипотезы. Физические законы. Физические теории. Классическая механика Ньютона. Границы применимости физических законов и теорий. Принцип соответствия. Основные элементы физической картины мира.

МЕХАНИКА – 31 ЧАС

Кинематика (7ч.)

Механическое движение и его виды. Движение точки и тела. Положение точки в пространстве. Способы описания движения. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Уравнение прямолинейного равномерного движения. Мгновенная скорость. Сложение скоростей. Ускорение. Единицы ускорения. Скорость при движении с постоянным ускорением. Движение с постоянным ускорением. Свободное падение тел. Движение с постоянным ускорением свободного падения. Равномерное движение точки по окружности. Движение тел. Поступательное движение. Вращательное движение твердого тела. Угловая и линейная скорости вращения.

Динамика (13ч.)

Основное утверждение механики. Материальная точка. 1 закон Ньютона. Сила. Связь между ускорением и силой. 2 закон Ньютона. Масса. Третий закон Ньютона. Единицы массы и силы. Понятие о системе единиц. Принцип относительности Галилея. Инерциальные системы отсчета. Силы в природе.

Всемирное тяготение. Закон всемирного тяготения. Первая космическая скорость. Силы тяжести. Вес. Невесомость. Деформация и силы упругости. Закон Гука. Силы трения между соприкасающимися поверхностями. Роль силы трения. Силы сопротивления при движении твердых тел в жидкостях и газах.

Законы сохранения в механике. Статика (11 ч.)

Импульс материальной точки. Закон сохранения импульса. Реактивное движение. Успехи в освоении космического пространства. Работа силы. Мощность. Энергия. Кинетическая энергия и ее изменение. Работа силы тяжести. Работа силы упругости. Потенциальная энергия. Закон сохранения энергии в механике. Уменьшение механической энергии системы под действием сил трения.

Равновесие тел. Первое условие равновесия твердого тела. Второе условие равновесия твердого тела.

МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕПЛОВЫЕ ЯВЛЕНИЯ - 16ч

Тепловые явления. Молекулярно-кинетическая теория. Основные положения МКТ. Размеры молекул. Масса молекул. Количество вещества. Броуновское движение. Силы взаимодействия молекул. Строение газообразных, жидких и твердых тел. Идеальный газ в МКТ. Среднее значение квадрата скорости молекул. Основное уравнение МКТ газов. Температура и тепловое равновесие. Определение температуры. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Измерение скоростей молекул газа. Уравнение состояния идеального газа. Газовые законы. Насыщенный пар. Зависимость давления насыщенного пара от температуры. Кипение. Влажность воздуха. Кристаллические тела. Аморфные тела.

Внутренняя энергия. Работа в термодинамике. Количество теплоты. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Необратимость процессов в природе. Статистический характер процессов в термодинамике. Принцип действия тепловых двигателей. Коэффициент полезного действия. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды.

ОСНОВЫ ЭЛЕКТРОДИНАМИКИ - 19ч.

Элементарный электрический заряд и элементарные частицы. Заряженные тела. Электризация тел. Закон сохранения электрического заряда. Основной

закон электростатики — закон Кулона. Единица электрического заряда. Взаимодействие и действие на расстоянии. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля. Напряженность поля заряженного шара. Проводники в электростатическом поле. Диэлектрики в электростатическом поле. Два вида диэлектриков. Поляризация диэлектриков. Потенциальная энергия заряженного тела в однородном электрическом поле. Связь между напряженностью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности. Электроемкость. Единицы электроемкости. Конденсаторы. Энергия заряженного конденсатора. Применение конденсаторов.

Электрический ток. Сила тока. Условия, необходимые для существования электрического тока. Закон Ома для участка цепи. Сопротивление. Электрические цепи. Последовательное и параллельное соединения проводников. Работа и мощность тока. Электродвижущая сила. Закон Ома для полной цепи.

Электрическая проводимость различных веществ. Электронная проводимость металлов. Зависимость сопротивления проводника от температуры. Сверхпроводимость. Электрический ток в полупроводниках. Электрическая проводимость полупроводников при наличии примесей. Электрический ток через р-п переход. Транзистор. Электрический ток в вакууме. Электронные пучки. Электронно-лучевая трубка. Электрический ток в жидкостях. Закон электролиза. Электрический ток в газах. Несамостоятельный и самостоятельный разряды. Плазма.

<u>11 класс</u>

Электродинамика (продолжение) (12 часов)

Магнитное поле тока. Индукция магнитного поля. Сила Ампера. Сила Лоренца. Самоиндукция. Индуктивность. Энергия магнитного поля. Магнитные свойства вещества. Электродвигатель. Закон электромагнитной индукции. Правило Ленца. Индукционный генератор электрического тока.

Электромагнитные колебания и волны (11 часов)

Колебательный контур. Свободные и вынужденные электромагнитные колебания. Гармонические электромагнитные колебания. Электрический резонанс. Производство, передача и потребление электрической энергии.

Электромагнитное поле. Электромагнитные волны. Скорость электромагнитных волн. Свойства электромагнитных волн. Принципы радиосвязи и телевидения.

Оптика (17 часов)

Скорость света. Законы отражения и преломления света. Интерференция света. Дифракция света. Дифракционная решетка. Поляризация света. Дисперсия света. Линзы. Формула тонкой линзы. Оптические приборы.

Постулаты специальной теории относительности. Полная энергия. Энергия покоя. Релятивистский импульс. Дефект масс и энергия связи.

Квантовая физика (13 часов)

Гипотеза Планка о квантах. Фотоэлектрический эффект. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Фотон. Давление света. Корпускулярно – волновой дуализм.

Модели строения атома. Опыты Резерфорда. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора.

Состав и строение атомного ядра. Свойства ядерных сил. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер. Закон радиоактивного распада. Свойства ионизирующих ядерных излучений. Доза излучения.

Ядерные реакции. Цепная реакция деления ядер. Ядерная энергетика. Фундаментальные взаимодействия.

Повторение (16 часов)

Темы контрольных и лабораторных работ:

10 класс

Лабораторной работы	Контрольная работа
Лабораторная работа №4 «Изучение движения	Вводная контрольная работа
тела, брошенного горизонтально»	
Лабораторная работа №1 «Изучение движения	Контрольная работа №1
тела по окружности»	« Кинематика»
Лабораторная работа №2 «Измерение жесткости	Контрольная работа №2
пружины»	« Динамика.»
Лабораторная работа №3 «Измерение	Контрольная работа №3
коэффициента трения скольжения»	«Законы сохранения в механике»
Лабораторная работа №5 «Изучение закона	Контрольная работа №4 «
сохранения механической энергии»	Молекулярная физика.»
Лабораторная работа №6 «Изучение равновесия	Контрольная работа №5 «Основы
тела под действием нескольких сил»	термодинамики»
Лабораторная работа №8 «Последовательное и	Контрольная работа №6 «Законы
параллельное соединение проводников»	постоянного тока»
Лабораторная работа №9 «Измерение ЭДС и	Итоговая контрольная работа
внутреннего сопротивления источника тока»	

11 класс

Лабораторные работы	Контрольные работы
Лабораторная работа № 1 «Действие магнитного поля на проводник с током»	Входная контрольная работа
Лабораторная работа № 2 « Изучение явления электромагнитной индукции»	Контрольная работа № 1 « Магнитное поле. Электромагнитная индукция»
Лабораторная работа № 3 «Экспериментальное измерение показателя преломления стекла»	Контрольная работа № 2 « Электромагнитные колебания и волны»
Лабораторная работа № 4 «Измерение длины световой волны»	Контрольная работа № 3 « Оптика. Световые явления»
	Контрольная работа № 4 «Фотоэффект»
	Контрольная работа № 5 «Световые кванты. Физика атома и атомного ядра»
	Итоговая контрольная работа

Оценка ответов учащихся

Оценка «5» ставиться в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение физических величин, их единиц и способов измерения: правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении др. предметов: если учащийся допустил одну

ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «З» ставиться, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросов программного материала: умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул, допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

оценка контрольных работ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов.

Оценка «**4**» ставится за работу, выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «**3**» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4 - 5 недочётов.

Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

оценка лабораторных работ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

Оценка «**4**» ставится, если выполнены требования к оценке «5», но было допущено два - три недочета, не более одной негрубой ошибки и одного недочёта.

Оценка «**3**» ставится, если работа выполнена не полностью, но объем выполненной части таков, позволяет получить правильные результаты и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

Оценка «2» ставится, если работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Во всех случаях оценка снижается, если ученик не соблюдал требования правил безопасности труда.